

CUMIN – MOUVE

https://cumin.univ-lille.fr/

Study of the stationary bidirectional charger for electric vehicles

Authors:

- F. DJOUAB - T. KADDOUR - V.C. NGUYEN

Supervisor:

P. DELARUE

Outline

Context and objective

https://cumin.univ-lille.fr/

Context and objective

Context and objectives

V2G

4

Context and objectives

Positioning in the CUMIN programme Campus of University with Mobility based on Innovation and carbon Neutral

MOUVE : **MObility and Use of electric VEhicles based on dedicated charging infrastructure**

Objective of this project is to model and simulate a stationary bidirectional power charger

https://cumin.univ-lille.fr/

Literature review

Stationary charger topology

Single stage bidirectional charger

✓ High yield Fewer components Cheaper cost \sim

Limited voltage

Two stage **bidirectional charger**

More flexibility Better voltage management batteries.

The different charging modes

Types of bidirectional chargers

Advantages of bidirectional chargers:

- Grid stabilization 🔸
- Cost savings 💰
- Renewable energy support ไ
- Peak demand reduction 🕴
- Disadvantages of V2G:
- Battery degradation 🔋
- Infrastructure cost \$
- Energy losses 🔔
- Limited vehicle compatibility 🚜

https://cumin.univ-lille.fr/

Our case study Stationary bidirectional charger

Model organization

Simulation results

Conclusion and perspectives

🗹 Conclusion

- A stationary two-stage bidirectional power charger is modeled and simulated.
- Reactive power is controlled.
- PWM (Pulse Width Modulation) methods help reduce harmonic distortion, minimize distorsion and lower power losses in the three-phase grid.
- The Constant Current-Constant Voltage (CC-CV) strategy is employed for battery charging.
- The Constant Power-Constant Voltage (CP-CV) strategy is used for battery discharging.
- **Perspectives**: Future work should focus on:
- Studying the loss in a converter component
- Effect temperature during the battery charging and discharging.

Our university as an exciting living lab towards eco-cities through an innovative transdisciplinary framework !

Annex

15

Charging/ discharging grid current

CC-CV: Constant Current - Constant Voltage CP-CV: Constant Power - Constant Voltage