

https://cumin.univ-lille.fr/

Nissan Leaf – total cost of ownership

CUMIN - TESS

LEHUT JÉHU Margaux BOUSCAYROL Alain HITTINGER Eric

13/02/2025

MÉTROPOLE EUROPÉENNE DE LILLE Université de Lille

FRANCE

MEL

2

Région

Hauts-de-France

Outline

Economic value of cars

Technical tools needed

Analysis and future possibilities

Is an electric car economically viable?

In 2035, only BEV and FCEV will be available for new cars in France

TESS objective: develop flexible technical-economic models, prevision works (TCO of Renault ZOE, economic model of charging stations, etc)

Presented project: Total cost of ownership of the Nissan leaf

Vehicle chosen: the Nissan Leaf

The Nissan Leaf of the L2EP

Source : documentation given by the L2EP

Country	Number of electric cars sold
Europe	320 000
Japan	230 000
China	230 000
North America	210 000

Data by Nissan about the number of electric cars sold from 2010 to 2023 (rounded numbers)

- A real vehicle is available in the L2EP laboratory
- This vehicle is sold around the world, it may be used for different driving patterns
- Compact vehicle segment classically used in France

TCO: total cost of ownership

$$TCO = CAPEX - SV + \sum_{i=0}^{n} \frac{AC}{(1+\sigma)^{i}}$$

CAPEX: Capital expenditures

OPEX

OPEX: Operational expenditures

SV: Salvage Value

AC: Annual costs: Energy consumption, Maintenance and Insurance

 σ : discount rate

n: years of ownership

Methodology of TCO estimation

Model of the Nissan Leaf

using the EMR (Energetic Macroscopic Representation) formalism

Validation of the model of the Nissan Leaf on a real cycle

Error at the end of the cycle: <1% Average error on the cycle: 10%

8

Inflation adjustment

Example: Car insurance in New York

Sensitivity Analysis – Different parameters

Different exploitations of the results

TCO distribution for France and USA for 5 years

11

Conclusion

TCO of Nissan Leaf

- simulation of a consumption model
- estimation of TCO for a driving cycle

Perspectives

- more accurate simulation model (CUMIN-EVE)
- better estimation of the maintenance and insurance costs
- other expenses to consider
 - impact of different driving cycles (CUMIN-SARA)
 - comparison with other countries

30 25

20

Batterie Motorisation

https://cumin.univ-lille.fr/ GES en tonnes de CO2 équivalent pour divers véhicules VE France VE VE Suede Allemagne Pologne Reste du Production carburant Emissions et électricité pendant conduit Int. maşs _ Rad. _ Conv. HVAC Subsyster

Our university as an exciting living lab towards eco-cities through an innovative transdisciplinary framework !

Sensitivity Analysis – Different parameters

Clio in 2018

from « Techno-Economic Comparison of Total Cost of Ownership of Electric and Diesel Vehicles » by A. Desreveaux and Al

with an initial cost of 39 000€ in 2023