

https://cumin.univ-lille.fr/

CUMIN - TIM

- 22

Liberté

Égalité Fraternité

RÉPUBLIQUE

FRANÇAIŠE

ADEME

AGENCE DE LA TRANSITION ÉCOLOGIQUE

LEHUT JÉHU Margaux BRUNEL Jean-François LHOMME Walter

12/02/2025

Outline

Context of the work

Context of TIM

Mass concentration emission characteristics of BWP from CFVs and NEVs under standard test cycle [Zhang 2024]

- Using mechanical braking leads to pollutants emissions such as noise and fine particles
- Security norms impose the usage of mechanical brakes
- Not using enough mechanical brakes leads to instabilities

Brake-by-wire and electrical braking

Working schedule

1. Energetic model on a real battery EV (Nissan Leaf) eV platform / L2EP

2. Tribological characterization on the brakes of the Leaf 4MAAT-Tribo platform / LaMcube

3. Multi-physical modelling and EMR of the Leaf by taking into account both models

4. Multi-objective braking strategy: battery regeneration / particle emissions

5. Validation of the strategy using multisite distributed Hardware-in-the-Loop (HiL) testing eV platform (L2EP) & 4MAAT-Tribo platform (LaMcube)

6. Strategy modularity : use of the previous work on other vehicles

LEAF EMR

Multisite distributed HiL (Hardware-in-the-Loop) testing

Method from [Tournez 23]

Braking strategy

Bus CAN of the Nissan LEAF: data measured (with SARA project) such as:

- Speed of the vehicle
- Accelerator pedal position
- Voltage and current of the battery
- Traction machine speed (estimated value)
- Not enough information on mechanical braking

- The braking strategy is unique to each vehicle / manufacturer
- Several problematics
 - Influence of the driving patterns
 - Influence of the acceleration and velocity
 - Importance of the regenerative braking

Nissan LEAF of L2EP

Estimation of the resistive forces to motion

Energetic validation of the model

Error on energy consumption at the end of the cycle: <1%

Power validation of the resistive forces to motion during traction

The model chosen for the resistive force cannot be used for power applications, especially at low velocities.

Why is it not working?

Data measured

- Measures of velocity : GPS or inboard sensors
- Initialisation of slope sensor
- Acceleration data : measured or calculated

Hypothesis on behaviours

- Constant efficiency of the mechanical transmission
- Constant resistance coefficient of the rolling
- Wind influence
- Straight-line travel, influence of turns ignored

Choices for certain values

- Aerodynamic values : frontal area of the vehicle, drag coefficient
- Mass of the vehicle

Next step: using a neural network

30 25

20

Batterie Motorisation

https://cumin.univ-lille.fr/ GES en tonnes de CO2 équivalent pour divers véhicules VE France VE VE Suede Allemagne Pologne Reste du Production carburant Emissions et électricité pendant conduit Int. maşs _ Rad. _ Conv. HVAC Subsyster

Our university as an exciting living lab towards eco-cities through an innovative transdisciplinary framework !

Model of the Nissan Leaf

