

https://cumin.univ-lille.fr/

CUMIN – EVE

Energy Consumption of Nissan Leaf with different Driving Conditions.

A. Baziz, I. Diop, H. Er-rahamaouy

Master VIE project

Supervisor: A. Bouscayrol

Feb 13th, 2024

Outline

Introduction and studied vehicle

Simulation and validation

Energy consumption of different cases

→ EVE: estimation of energy consumption of various electrified vehicles (e-bike, e-cars, e-bus, H2-bus...)

Master Project: energy consumption of Nissan Leaf with different driving conditions

Description of the studied system and its subsystems

- Battery : 350.4 V / 40 kWh
- Maximum Speed : 144 km/h
- Autonomy: 270 km
- energy consumed (WLTC) : 171 Wh/km
- Mass: 1505 kg

[Nissan LEAF ZE1 Technical Documentation]

Three main Subsystems:

- Traction Subsystem
- Energy Storage Subsystem
- Auxiliary Subsystem

Model and control organization

Complex model organisation using the "EMR" formalism.

Simulation and validation

Worldwide Harmonized Light Vehicles Test (km/h)

Cycle Class 3 Used by the Manufacturer

	WLTC Cycle class 3			
	Consumption (Wh/km)	consumption error (%)	Autonomy (km)	
Real Vehicle	171*	ref	270*	
Simulation	177.3	1.9	250	

*[Nissan LEAF ZE1 Technical Documentation]

the simulation model has 2% of error on energy consumption compared to the Nissan data

Validation using a real driving cycle

Battery Current (A)

Velocity (km/h)

Evaluation of the gain of energy recovery

Real driving cycle				
Braking type	Pure mechanical	Pure Electrical		
Consumption (Wh/km)	123.3	117.2		

5% of energy saving using regenerative braking

Conclusion

I Simulation model of the Nissan Leaf

- validation with 2% of error with a real driving cycle
- energy saving of 5% using regenerative braking
- energy consumption negligeable for turns

Perspectives

- impact of mass transfer during braking
- impact of different drivers (CUMIN-SARA)

https://cumin.univ-lille.fr/

Our university as an exciting living lab towards eco-cities through an innovative transdisciplinary framework !

