

https://cumin.univ-lille.fr/

CUMIN - STeVE

Scalability of powertrain for electrified vehicles and application to en e-bus

<u>A. Aroua^{a,b}</u>, W. Lhomme^a, K. Stockman^b,

A. Bouscayrol^a, P. Sergeant^b & F. Verbelen^b

¹ University of Lille, L2EP, France

² Ghent University, Belgium

Outline

Project context, objective & framework

Brief overview on the scaling methods

Case study: electric bus

Fast moving CO₂ regulation pathway to 2030

Ref: International Council on Clean Transportation ICCT

3

Need for fast development of electric vehicles

Time (~ 4 years)

Scalability: a solution?

Electric motors product series

- Geometric changes in size of a reference object
- □ Predicting the performances of a new design based on the data from an existing one
- □ Reduce the computational effort

Scalability & automotive applications

- Same components, but diverse requirements...
- Need for methodologies supporting powertrains scalability

Scaling-leveraging strategies for powertrain components (electric motor as an illustrative case)

Project objective & challenges

Objective:

Develop a scaling method for electric axle systems (inverter-electric motor-gearbox) for system-level investigations

Challenges:

Component-level

System-level

Within the framework of CUMIN

Fast energy consumption assessment of different vehicles (light vehicles, buses, trucks) for a "green" campus

8

Project framework: a joint Franco-Belgian PhD

CUMIN - STeVE

https://cumin.univ-lille.fr/

Brief overview on the scaling methods

Component-level: scaling laws applied to components

Component-level: scaling laws applied to components

12

New model organization to facilate the incorporation of scalability in simulations

Objective: organize the models and control of scaled components in a unified way

- → Easy reuse of models and control for different tasks
- → Speed up the pre-design time

Challenge: derive equations for power adaptation elements

New model organization of a scaled motor using EMR formalism

System-level: scaling laws applied to vehicles

- ✤ A common electrical powertrain for different types of vehicles:
- Battery electric vehicle
- Hybrid electric vehicle
- Fuel cell electric vehicle

 Testing of the effectiveness of the methodology on real case vehicles

https://cumin.univ-lille.fr/

CUMIN - STeVE

Case study: electric bus

Scalability of electric drives for an electric bus

Efficient components and automotive applications

ALTAS interurban mini bus (5800kg / 20 seats / e-drive 160 kW / Li-Ion NMC Bat. 115 kWh) https://www.atlasautobus.com

E-drive CE2I (40 kW):

- 2 in the front axle
- 2 in the rear axle
- Intelligent energy mangement

Interests?

Based on the work conducted by K. Li et al within CE2I project

EMR (Model Flexible simulation tool ٠ oraganization) u_{ed_front} Fast sizing of the e-drive ٠ T_{ed2_ref} F_{trac} Env. Bat. Ω_{ed3} Brake Aux. ed rea u_{aux} $\Omega_{_{ed}\ rear}$ Ω_{ad} i_{ed4} T_{ed3_ref} F_{bk_ref} T_{ed4_ref} T_{fg_front_ref} T_{ed front ref} Control T_{edl_ref} F_{trac_ref} F_{wh_re} v_{ev_ref} T_{ed2_ref} T_{ed_rear_ref} T_{fg_rear_ref} 4 CE2I e-drives $K_3 = K_2$ K_{bk_CE2I} K_{I} Optimal strategy **Energy management strategy** (DP)

Virtual development of the multi-drives based electric bus

18

Comparison of energy consumption

Braking strategy: 60% in the front axle and 40% in the rear axle (stability)

	Consumption (kWh/100km)		
Driving cycles	New York	London	Denver
Standard e-drive	77.0	43.8	66.1
4 CE2I e-drive	58.4	32.0	48.3
Consumption gain	25.2 %	26.9 %	27.0 %

Energetic gains despite a weight increase of 30 kg:

- 1) Regenerative braking
- 2) E-drive distribution

- Modultarity
- 3) Efficiency improvement Intelligent energy mangement

Conclusion

➤ Scalability

- Rapidly generate and assess different preliminary designs using scaling laws
- Ease of implementation at system-level simulations
- Contribution to reduce the time of pre-design phases

≻ Results:

- 1% to 27% gain compared to conventional electric drives
- Potential of fault tolerance (modularity)

≻ Perspectives:

• Extension of the application case to CUMIN vehicles

https://cumin.univ-lille.fr/

CUMIN programme

Our campus as an exciting living lab towards eco-cities!

