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Fast moving CO, regulation pathway to 2030
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Regulations tightening further
with a short time frame



Need for fast development of electric vehicles
Time (~ 4 years)
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Focus of this project:




Scalability: a solution?

Electric motors product series

O Geometric changes in size of a reference object
O Predicting the performances of a new design based on the data from an existing one

O Reduce the computational effort
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Scalability & automotive applications

mVide range of automotive applications\ [Power Vertical leveraging \
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« Same components, but diverse requirements... \ /

« Need for methodologies supporting powertrains scalability Scaling-leveraging strategies

for powertrain components
(electric motor as an illustrative case)



Project objective & challenges

‘* Obijective:

Develop a scaling method for electric axle systems (inverter-electric motor-gearbox) for system-level investigations

* Challenges:

Component-level
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Deriving scaling laws of the parameters and losses
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Within the framework of CUMIN
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Fast energy consumption assessment of different vehicles (light vehicles, buses, trucks) for a “green” campus




Project framework: a joint Franco-Belgian PhD
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Component-level: scaling laws applied to components

( Scaled Scaled Scaled )
inverters electrical motors gearboxes
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Components

Experimental campaign to validate the theoretical
scaling laws using a series product family




Component-level: scaling laws applied to components
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« Geometric scaling: Axial scaling K, and Radial scaling Ky

« Losses mapping: Pysses = f(Kp, Kay Kr) PO sses
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New model organization to facilate the incorporation of scalability in simulations

Power Reference  Power
adaptation component adaptation
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Objective: organize the models and control of scaled components in a unified way

=» Easy reuse of models and control for different tasks

=>» Speed up the pre-design time

@ Challenge: derive equations for power adaptation elements



New model organization of a scaled motor using EMR formalism
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System-level: scaling laws applied to vehicles
L ot
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s A common electrical powertrain for different types of vehicles:

- Battery electric vehicle
* Hybrid electric vehicle :] I P
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% Testing of the effectiveness of the methodology
on real case vehicles

©



CUMIN - STeVE

Case study:

electric bus
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Scalability of electric drives for an electric bus

< << Conventional “e-drive” <<<<

J-|-_ |k e-motor
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Scaling ALTAS interurban mini bus
methods (5800kg / 20 seats / e-drive 160 kW /
Li-lon NMC Bat. 115 kWh)
nvertisseur https://www.atlasautobus.com
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@ Based on the work conducted by K. Li et al within CE2I| project



Virtual development of the multi-drives based electric bus

EMR (Model

oraganization)

Flexible simulation tool

Fast sizing of the e-drive

Control

Optimal strategy
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Energy management strategy




Comparison of energy consumption

« Braking strategy: 60% in the front axle and 40% in the rear axle (stability)

Consumption (kWh/100km)

Driving cycles New York London Denver
Standard e-drive 770 43 8 66.1

4 CE2I e-drive 58.4 32.0 48.3
Consumption gain 25.2 % 26.9 % 27.0 %

Energetic gains despite a weight increase of 30 kg:

1) Regenerative braking
2) E-drive distribution

3) Efficiency improvement

} Modultarity

Intelligent energy mangement




Conclusion

» Scalability
» Rapidly generate and assess different preliminary designs using scaling laws
« Ease of implementation at system-level simulations
» Contribution to reduce the time of pre-design phases
» Results:
* 1% to 27% gain compared to conventional electric drives
» Potential of fault tolerance (modularity)
» Perspectives:

» Extension of the application case to CUMIN vehicles
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Our campus as
an exciting living lab
towards eco-cities!



