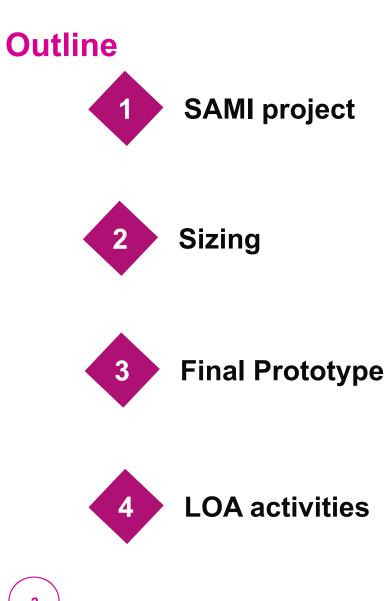
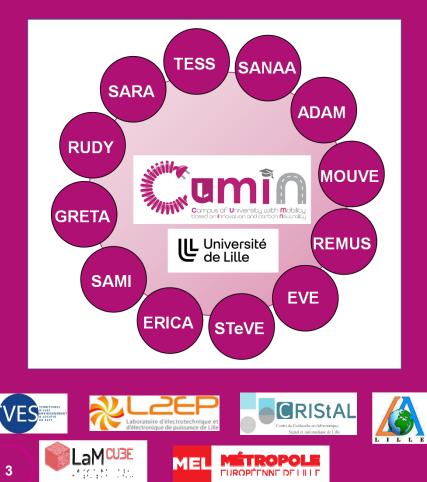


CUMIN - SAMI



Charging stations of electrified vehicles using PV panels

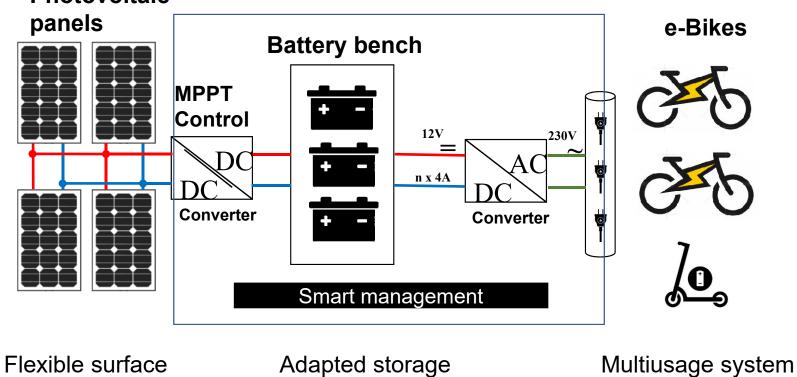

Salma Fadili (ULille, L2EP) Alain Bouscayrol (ULille, L2EP) Philipe Delarue (ULille, L2EP) Nicolas Ferlay (ULille, LOA)

https://cumin.univ-lille.fr/

CUMIN - SAMI

Study of Autonomous charging stations of light e-Mobility for low environmental Impact (SAMI).

Specifications


Build a demonstrator of an autonomous charging station for light electric vehicles, based on renewable energy.

Demand

- The demonstrator would be placed at « cité scientifique » Campus.
- The charging station is completely off-grid.
- The energy needed is provided solely by photovolatic panels.
- Docking for 3 e-bikes or equivalent.
- Room for 2 m² of PV panels.

Synoptic of the demonstrator

The demonstrator is flexible in terms of sizing, usage and placement and can be extended to fulfill different objectives for different projects.

Photovoltaic

https://cumin.univ-lille.fr/

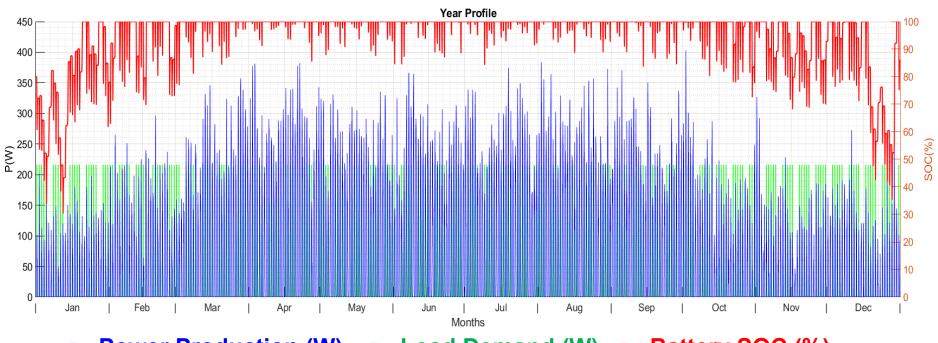

CUMIN - SAMI

Sizing

System sizing

- Interface tool developed with MATLAB GUI (Graphical User Interface) •
- Based on the PVGIS satellite database ٠

7


Interface usage

Energy Profile Load Creation Tool Simulation Inputs			
Region Data Region Lille-Center ✓ Lat/Lon 50.628 3.069 PV Slope (°): 39 PV Azimuth (°): -2 (South Oriented) (West Oriented) -2	Solar Panels Power (Wp) 225 No of Panels 2 Losses(%) 14 Panel Technology (c-Si) (C-Si) (C-Si) (C-Si)	Optimization Fix Battery Cap Min Bat Lvl (%) 25	Graphic Period Year ▼ Month Jan ▼
Radiation Data Base: PVGIS-SARAH Upload Outside Data Upload File Name: Upload	Battery Capacity (Ah) 100 Initial SOC (%) 80	Solution	Generate Curve
Ļ		ed definition rameters	Output Customization
European Commission - PVGIS			

Load Profile creation tool

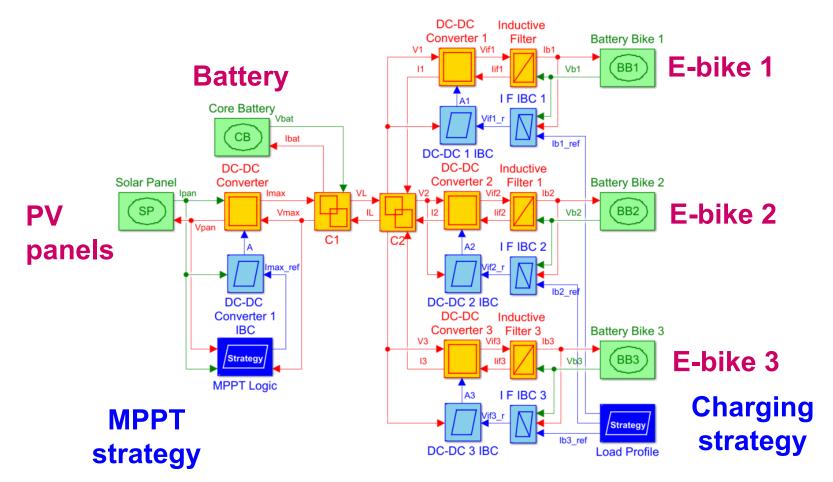
Simulation results

- Location University of Lille, Cité Scientifique
- Battery Capacity 100Ah, 12V \\ PV Panel Power 2 x 225W
- Load Profile (Workday) 3 bikes charging from 9 am to 6 pm with 66% of SOC

Power Production (W) Load Demand (W) Battery SOC (%)

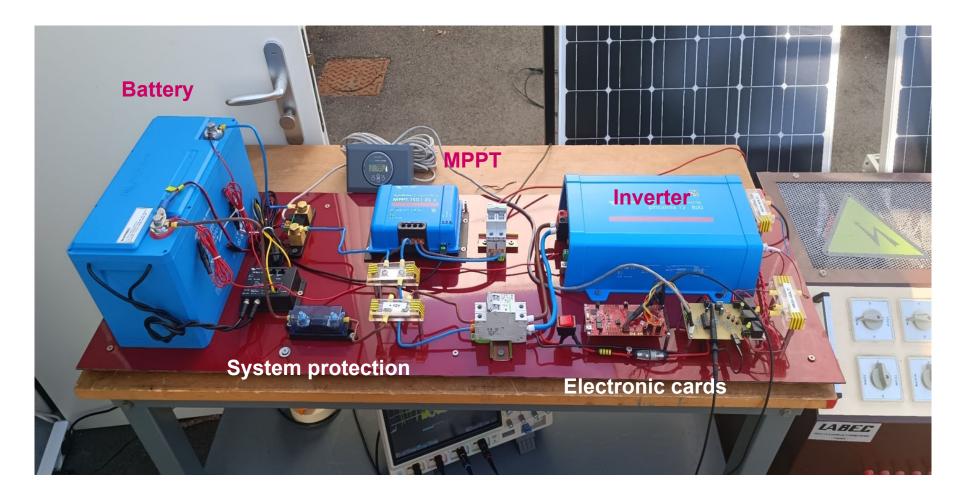
https://cumin.univ-lille.fr/

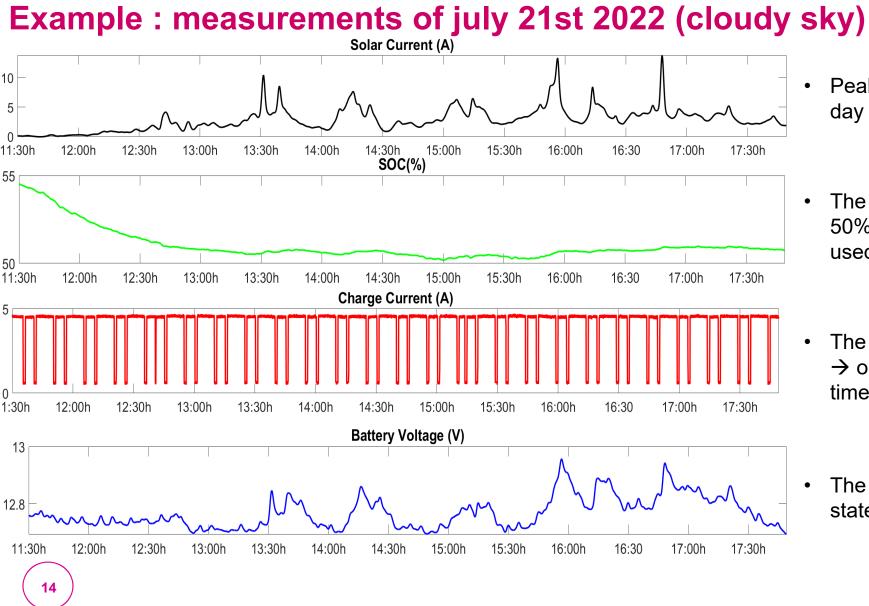
CUMIN - SAMI


Final prototype

bpifrance

Simulation of energy flow


- Energetic Macroscopic Representation (EMR)
- Simulation on Matlab-Simulink ©


11

Energy conversion system

The prototype of the energy conversion system

- Peaks of sunlight during the day
- The SoC stays between 55-50% thanks to the strategy used
- The SoC is lower than 60%
 → one vehicle charging at a time
- The voltage is related to the state of charge

https://cumin.univ-lille.fr/

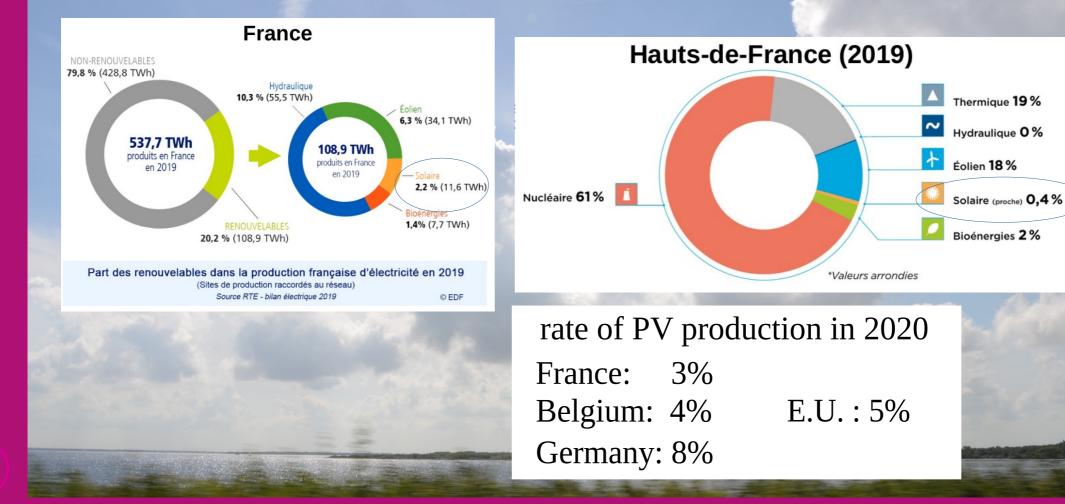
15

CUMIN - SAMI

LOA activities

Research activities toward a better characterization and exploitation of the solar resource, particularly with photovoltaic systems:

ground-based measurement facility, exploitation of atmospheric modellings, and some perspectives at the LOA laboratory, in connection with the CUMIN project


> Nicolas Ferlay Associate professor

Laboratoire d'Optique Atmosphérique (LOA) Physics Department Batiment P5, Cité Scientifique, Villeneuve d'Ascq

CONTEXT & MOTIVATIONS

Much less installed photovoltaic capacities in Hauts-de-France as compared to other regions and countries (Belgium and Germany)

CONTEXT & MOTIVATIONS

Much less installed photovoltaic capacities in Hauts-de-France as compared to other regions and countries (Belgium and Germany)

despite : a regional dynamism rev3 CORESO CD22 ACCÉLÉRATEUR **DE L'ÉCO-TRANSITION** ... For sure, there is a challenge, a need to optimize the exploitation of the solar resource in HdF ...

a not so weak solar potential

ARGI

<complex-block>

- Climatology of the solar resource, understanding of intra- and inter-annual variabilities, its spatio-temporal variability
- Partition of solar energy between clear sun and cloudy moments, direct and diffuse radiation fields
- Sensitivity of solar energy to the atmospheric content
- Quantify the Direct Radiative Effect (DRE) of aerosols and clouds
- Accuracy of satellite based products (atm. content, surface solar irradiance)
- Estimation of the solar irradiance on tilted surfaces
- Solar and atmospheric environment in the future?
- Efficiency or load factor of photovoltaic systems under real working conditions: actual values (compared with reference), dependence?
- Forecast of surface solar irradiance and PV power

- Climatology of the solar resource, understanding of intra- and inter-annual variabilities, its spatio-temporal variability
- Partition of solar energy between clear sun and cloudy moments, direct and diffuse radiation fields XX
- Sensitivity of solar energy to the atmospheric content XX
- Quantify the Direct Radiative Effect (DRE) of aerosols and clouds
- Accuracy of satellite based products (atm. content, surface solar irradiance) X
- Estimation of the solar irradiance on tilted surfaces X

PhD thesis of G. Chesnoiu (2020-2023)

Long term perspective

- Solar and atmospheric environment in the future? Work in progress
- Efficiency or load factor of photovoltaic systems under real working conditions: actual values (compared with reference), dependence? Short for provide the second statement of the secon
- Forecast of surface solar irradiance and PV power

RESEARCH ACTIVITIES AT LOA

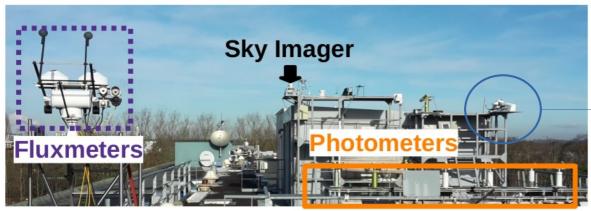
- Study of atmospheric components and their interactions with solar and terrestrial radiation fields
- Expertise in radiative transfer modelling and simulation
- Expertise in airborne and spaceborne remote sensing
- Expertise in ground based measurement and remote sensing (photometry, lidar, radiometer, spectrometer) to characterize aerosols, water vapor, clouds

ATOLL

platform

SOME OF IT FOCUSE ON SOLAR RADIATION

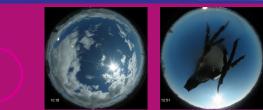
- Ground based measurements of surface solar irradiance since 2009
- Developments since 2015 :
 - 3 L3, 1 M1, 3 M2 internships
 - A phD thesis (3rd year) financed by Region HdF and ADEME
 - Some accompanying grants (LEFE/INSU), CPER Climibio
 - Acquisition of new instruments ((spectro)radiometer, sky imager) and development of modelling tools
 - Collaboration with HYGEOS (Lille, Euratech), CNRM, with CUMIN (2022)



+ Solar flux on tilted surface + spectroradiometer EKO MS711

ATOLL measurements

Use of a unique data set for the Hauts-de-France region of coincident aerosol and radiation measurements from the ATOLL platform in Lille over the period 2010-2020. AEROSOLS


View of the instrumental platform ATOLL (Atmospheric Observations in Lille) located on the roof of the P5 building of the University of Lille, Villeneuve d'Ascq, campus Cité scientifique.

Additional measurements:

Sky imager since 2009

8

 Surface concentrations (PM₁₀ et PM_{2.5}, ATMO-HdF) and chimical composition of NR-PM₁ by an ACSM (SO4, NO3, NH4, Org) and aethalometer (BC)

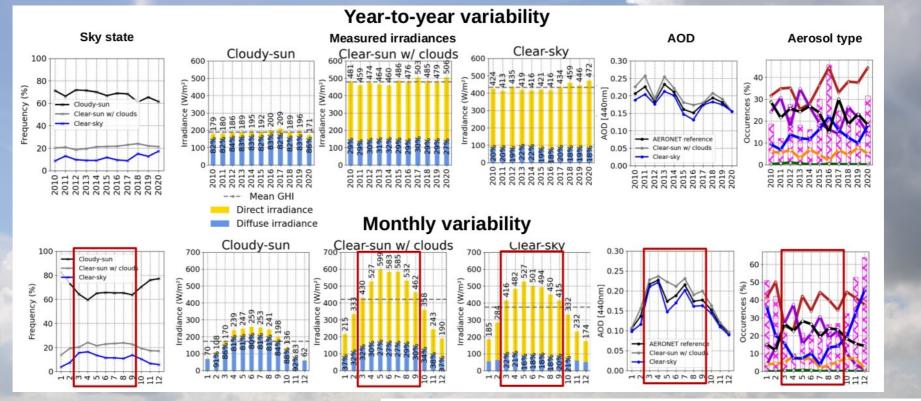
Photometer CIMEL AERONET/PHOTONS

- Aerosol Optical Depth (AOD) and Angström Exponent (AE) in Clear-sun conditions
- Inversions of the size distribution and absorption properties of aerosols

SOLAR ENVIRONMENT

Kipp & Zonen fluxmeters (since 2009) – 1-min resolution

Pyrheliometer (CH1) **Direct incident radiation, DNI** Pyranometer (CMP 22) Diffuse irradiance, DHI


Beam horizontal irradiance $(BHI) = \cos(\Theta s)*DNI$

→ Global irradiance, GHI = BHI + DHI

- Climatology of the solar resource, understanding of intra- and inter-annual variabilities, its spatio-temporal variability
- Partition of solar energy, occurence of clear/cloudy situations

- Clear-sun detection using Battles et al. (2000) :
 - → 33% of situations on average although they produce 54% of the total energy received in a year and 84% of the direct energy
- Clear-sky detection using a revised algorithm from Garcia et al. (2014) :
 - \rightarrow 11% of situations on average over 2010-2020

 Climatology of the solar resource, understanding of intra- and inter-annual variabilities, its spatio-temporal variability

Study area

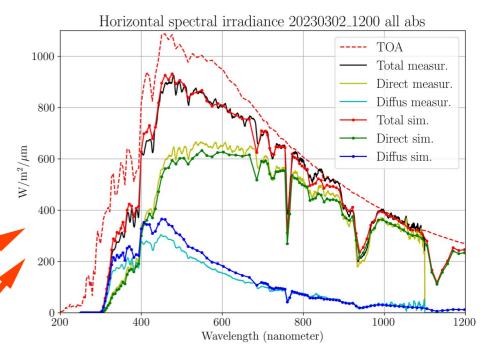
Use of the atmospheric model ALADIN-climat from and in collaboration with CNRM (Centre National de la Recherche Météorologie,Toulouse) (12km, 1 hour)

As a regional model As a climate model (horizon : 2100)

(radiation, clouds, particle pollution) PhD thesis of G. Chesnoiu (2020-2023)

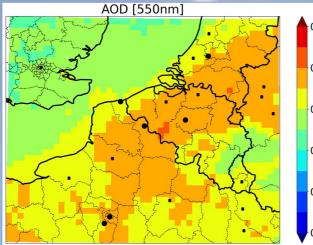
 Efficiency or load factor of photovoltaic systems under real working conditions: actual values (compared with reference), dependence?

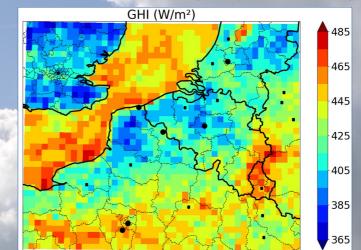
- Efficiency or load factor of photovoltaic systems under real working conditions: actual values (compared with reference), dependence? Shore the personalized
 - Measurements of outdoor PV (I, U) characteristic curve
 - Collaboration with L2EP :
 - (I,U) measurement instrument : ongoing
 - Acquisition of PV modules : done to be incorporated in the ATOLL platform : to come
 - Measurements of SSI and its spectral content
 - Cross analysis
 - Simulation tool : Simulation of the solar irradiance
 - Spectral response of the PV module
 - Simulation of the PV electric response


Inclinable

THANK YOU FOR YOUR ATTENTION !

QUESTIONS ?


- Efficiency or load factor of photovoltaic system actual values (compared with reference), dependent
 - Measurements of outdoor PV (I, U) characte
 - Collaboration with L2EP :
 - (I,U) measurement instrument : ongo
 - Acquisition of PV modules : done to be incorporated in the ATOLL platfe
 - Measurements of SSI and its spectral content
 - Cross analysis
 - Simulation tool : Simulation of the solar irradiance
 - Spectral response of the PV module



• Climatology of the solar resource, its spatio-temporal variability

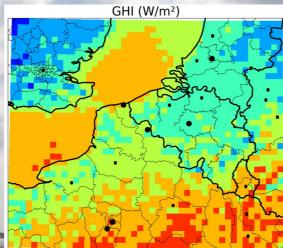
Aerosol AOD over 2010-2020 in Spring

0.20 0.16 0.12 0.08 -0.04 **Global Horizontal irradiance** over 2010-2020 in Spring – Clear Sky

180

175

170


165

160

155

150

Global Horizontal irradiance over 2010-2020 in Spring – All Sky